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CHAPTER 1

Introduction

The aim of this set of notes is to give a proof of Morley’s Theorem:

Theorem 1.1. If a complete theory T in a countable language is categorical in one un-
countable cardinal, then it is categorical in all uncountable cardinals.

This is quite a striking result; but perhaps more important than the result itself is the
whole range of ideas and techniques that are needed to prove it. In fact, these ideas form the
starting point of stability theory and hence of “modern” model theory.

The basic steps of the proof are:

(1) We first show that complete theories in a countable language that are κ-categorical for
some uncountable cardinal κ are totally transcendental. The proof of this fact relies
on the notion of (order) indiscernible, a concept which will also play an important
role at other points in the proof.

(2) Having established that the theories we are interested in are totally transcendental,
we embark on an analysis of these totally transcendental theories. We essentially need
two results about these theories: one on atomic extensions, which is relatively easy to
establish, while the other on the existence of indiscernibles requires us to develop the
rather technical notions of Morley rank and Morley degree.

(3) After we have done this, we can bring everything together and establish Morley’s
Theorem.

Some conventions:

• All theories T will be assumed to be complete and to have infinite models. (Such
theories have no finite models; why?)

• By a countable theory we will mean a theory formulated in a countable language.
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CHAPTER 2

Indiscernibles

1. Models realizing few types

As a first step towards proving Morley’s Theorem we want to establish the following result:

Theorem 2.1. Let T be a countable theory and let κ be an infinite cardinal. Then T has
a model of cardinality κ which realises only countably many types over every countable subset.

The proof will take up the whole chapter. A key notion that we need is that of an indis-
cernible:

Definition 2.2. Let I be a linear order and A be an L-structure. A family of elements
(ai)i∈I (or tuples of elements, all of the same length) is called a sequence of indiscernibles if for
all formulas ϕ(x1, . . . , xn) and all i1 < . . . < in and j1 < . . . < jn from I we have

A |= ϕ(ai1 , . . . , ain)↔ ϕ(aj1 , . . . , ajn).

Another way of putting this is: the truth of ϕ(ai1 , . . . , ain) in A depends solely on the order of
i1, . . . , in in I.

Remark 2.3. Strictly speaking we have defined the notion of an order indiscernible in
Definition 2.2; the term indiscernible is often used for something else. But as this other notion
plays no role in this lecture we have felt free to write indiscernible for what should perhaps be
more correctly called order indiscernible.

Definition 2.4. Let I be an infinite linear order and I = (ai)i∈I be a sequence of elements
in M , A ⊆M . The Ehrenfeucht-Mostowski type EM(I/A) of I over A is the set of L-formulas
ϕ(x1, . . . , xn) with M |= ϕ(ai1 , . . . , ain) for all i1 < . . . < in.

Note that if (ai)i∈I is a sequence of indiscernibles, then the Ehrenfeucht-Mostowski type
EM(I/A) is a complete type.

The proof of Theorem 2.1 depends on two lemmas, the first of which is an important result
in its own right and depends on Ramsey’s Theorem from combinatorics (see Appendix A).

Lemma 2.5. (The Standard Lemma) Let I and J be two infinite linear orders and I =
(ai)i∈I be a sequence of distinct elements of an L-structure M . Then there is a structure N ≡M
with an indiscernible sequence (cj)j∈J realizing the Ehrenfeucht-Mostowski type EM(I/A).

Proof. Choose a set C = (cj)j∈J of new constants; note that C inherits the structure of
a linear order from J . We need to show that

Th(M) ∪ {ϕ(c) : ϕ(x) ∈ EM(I/A)} ∪ {ϕ(c)↔ ϕ(d) : c, d ∈ C}
is consistent. (Here the ϕ(x) are L-formulas and c, d tuples of elements from C in increasing
order.)

5



6 2. INDISCERNIBLES

By compactness it is sufficient to show that

Th(M) ∪ {ϕ(c) : ϕ(x) ∈ EM(I/A), c ∈ C0}∪
{ϕ(c)↔ ϕ(d) : ϕ(x) ∈ ∆, c, d ∈ C0}

has a model, where C0 and ∆ are finite. In addition, we may assume that all tuples c have the
same length n.

Write [A]n for the set of n-element subsets of A. Since A is linearly ordered, we can also
regard this as the set of n-tuples from A in increasing order. Define an equivalence relation ∼
on [A]n by

a ∼ b⇔M |= ϕ(a)↔ ϕ(b) for all ϕ(x1, . . . , xn) ∈ ∆

where a, b are tuples in increasing order. Since this equivalence relation has at most 2|∆|

equivalence classes, Ramsey’s Theorem implies that there is an infinite subset B of A with all
n-elements subsets in the same equivalence class. Interpret c ∈ C0 by elements bc in B ordered
in the same way as the c. Then (M, bc)c∈C0

is a model. �

Corollary 2.6. Let T be a theory and I be a linear order. Then T has a model with a
sequence (ai)i∈I of distinct indiscernibles.

Definition 2.7. Let M be an L-structure and A ⊆ M be a subset. Then M is generated
by A if every element in M is the denotation of some term with parameters from A.

Lemma 2.8. Assume L is countable. If the L-structure M is generated by a well-ordered se-
quence (ai)i∈I of indiscernibles, then M realises only countably many types over every countable
subset of M .

Proof. Let B be a countable subset of M . Then every element in B is the denotation
of a term with parameters from A = {ai : i ∈ I}. In fact, because B is countable, there is
a countable subset A0 ⊆ A, say A0 = {ai : i ∈ I0} for some countable set I0 ⊆ I, such that
every element in B is the denotation of some term with parameters from A0. This means that
the type tp(m/B) for some m ∈ M is completely determined by the type tp(m/A0). Now,
every m ∈ M is of the form ta for some term t and some ai1 , . . . , ain in A. This means that
the type tp(m/A0) is completely determined by the term t and tp(ai1 , . . . , ain/A0). For the
term t there are only countably many possibilities, as the language is countable, and the n-type
tp(ai1 , . . . , ain/A0) is completely determined by:

• the relative position of the ik;
• the position of ik relative to I0, for which there are the following possibilities: (i)

bigger than all elements in I0, (ii) equal to some element in I0, (iii) smaller than some
i0 ∈ I0, but bigger than all {i ∈ I0 : i < i0}.

All in all, this means that there are only countably many possibilities for tp(a1, . . . , an/A0) and
hence also only countably many possibilities for tp(m/A0) and tp(m/B). �

We are now ready to prove the desired result:

Theorem 2.9. Let T be a countable theory and let κ be an infinite cardinal. Then T has
a model of cardinality κ which realises only countably many types over every countable subset.

Proof. Let T ′ be the skolemisation of T in a richer language L′ ⊇ L, and let I be a
well-ordering of cardinality κ and N ′ be a model of T ′ with indiscernibles (ai)i∈I . Then the
Skolem hull M ′ generated by (ai)i∈I has cardinality κ and is an elementary substructure of N ′.
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In addition, it realises only countably many types over every countable subset by the previous
lemma. But then the same is certainly also true for the reduct M = M ′ � L. �

2. Exercises

Exercise 1. Show that a sequence of elements in (Q, <) is indiscernible if and only if it is
constant, strictly increasing or strictly decreasing.

Exercise 2. Let I be an infinite linear order and κ = |I|. Show that if M is κ-saturated,
then there is is a sequence of indiscernibles (ai : i ∈ I) in M . (This is Marker 5.5.4.)

Hint: You may want to first prove the following: suppose M is κ-saturated and (yi : i ∈ I)
is a collection of variables with |I| ≤ κ. If Γ is a collection of formulas all whose free variables
belong to (yi : i ∈ I) and each finite subset of Γ is realised in M , then Γ is realised in M .





CHAPTER 3

Uncountable categoricity

1. Stable and totally transcendental theories

One of the key steps in proving Morley’s Theorem is the proof that countable theories that
are categorical in some uncountable cardinal are both ω-stable and totally transcendental. In
fact, as we shall see this is an immediate consequence of the main result of the previous chapter.
Before we can show this, however, we first need to define ω-stable and totally transcendental
theories and show that they are closely related.

Definition 3.1. Write {0, 1}∗ for the set of finite sequences consisting of zeros and ones,
and s0 and s1 for the result of adding 0 and 1 to the end of the sequence s ∈ {0, 1}∗. A theory
T is totally transcendental if there is no model M of T with a collection {ϕs(x) : s ∈ {0, 1}∗}
of LM -formulas such that for any s ∈ {0, 1}∗:

(1) M |= ∃xϕs(x).
(2) M |=

(
ϕs0(x) ∨ ϕs1(x))→ ϕs(x)

)
.

(3) M |= ¬
(
ϕs0(x) ∧ ϕs1(x)

)
.

Definition 3.2. Let κ be an infinite cardinal. A theory T is κ-stable if in each model M
of T and for each n ∈ N there are at most κ many n-types over each set of parameters of size
at most κ from M .

Theorem 3.3. A countable theory is totally transcendental if and only if it is ω-stable. In
fact, we have:

(1) If a theory is ω-stable, then it is totally transcendental.
(2) If an L-theory T is totally transcendental and κ ≥ |L|, then T is κ-stable.

Proof. (1) In a binary tree of LM -formulas only countably many parameters from M
occur; but its existence implies that there are at least 2ω different types over this countable set.

(2) Let κ ≥ |L| and assume that T is an L-theory that is not κ-stable. Then there is a
model M of T , a set of parameters A in M with |A| ≤ κ such that there are more than κ
many types over A. Write TA = ThA(M) and consider the Stone space Sn(TA). We will call a
formula ϕ(x) ∈ LA big if |[ϕ]| > κ. Since |Sn(TA)| > κ by assumption and there are κ-many
LA-formules, there must be at least one big formula. The proof will be finished once we show
that for any big formula ϕ(x) ∈ LA there is a formula ψ(x) ∈ LA such that both ϕ ∧ ψ and
ϕ ∧ ¬ψ are big. For then we can use this to create a binary tree of formulas showing that T is
not totally transcendental.

So assume that ϕ ∈ LA is big, but there is no formula ψ ∈ LA such that both ϕ ∧ ψ and
ϕ∧¬ψ are big. But since at least one of the two is big, this means that for any ψ ∈ LA precisely
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10 3. UNCOUNTABLE CATEGORICITY

one of ϕ ∧ ψ and ϕ ∧ ¬ψ is big. Define:

p(x) = {ψ(x) :ϕ(x) ∧ ψ(x) is big }.

This defines a complete type and if ψ 6∈ p, then |[ϕ ∧ ψ]| ≤ κ. But then

[ϕ] =
⋃
ψ 6∈p

[ϕ ∧ ψ] ∪ {p}

is the union of at most κ many sets of size at most κ and hence of a size at most κ. This
contradicts the fact that ϕ is big. �

As promised, we can now show:

Theorem 3.4. A countable theory T which is categorical in an uncountable cardinal is
ω-stable, hence totally transcendental, hence κ-stable for any infinite κ.

Proof. Let N be a model and assume that there is a countable subset A ⊆ N such that
there are uncountably many types over A. We may assume that all these types are realised in
N (see exercise 5 below), so let (bi)i∈I be a sequence of ω1-many elements from N realising
different types over A. First choose an elementary substructure M0 of N of cardinality ω1 which
contains both A and the bi, and then choose an elementary extension M of M0 of cardinality
κ. The model M is of cardinality κ and realises uncountably many types over the countable
set A. But Theorem 2.1 implies that T also has a model of cardinality κ in which this is not
the case. So T is not κ-categorical. �

2. More on saturated models

The result from the previous section can be used to characterise κ-categorical theories in
terms of saturated models. But first we need a lemma:

Lemma 3.5. If T is a countable theory which is κ-stable, then for all regular λ ≤ κ there
is a model of cardinality κ which is λ-saturated.

Proof. We constuct a sequence (Mα:α ∈ λ) of models of T of cardinality κ. We start
with any model M0 of cardinality κ of T ; at limit stages we take the colimit and at successor
stages we take a model Mα+1 which realises all types in S(Mα). This we can do with a model
of cardinality κ since |S(Mα)| ≤ κ. The colimit of the entire chain will be λ-saturated. �

Theorem 3.6. A countable theory T is κ-categorical if and only if all models of cardinality
κ are κ-saturated.

Proof. Note that we already proved this result for κ = ω (if not, do exercise 8) and that
we also know that any two κ-saturated models of cardinality κ are isomorphic. So we only need
to show that if T is κ-categorical for some uncountable cardinal κ, then its unique model of
cardinality κ is κ-saturated.

But then T is ω-stable, hence totally transcendental, hence κ-stable. So by the lemma
the unique model of T of cardinality κ is µ+-saturated for all µ < κ. So this model is κ-
saturated. �
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3. Exercises

Exercise 3. Show that the theory DLO of dense linear orders without endpoints is not
ω-stable.

Exercise 4. For the algebraists among us: show by hand (that is, without using any of
the results from this chapter) that the theory of algebraically closed fields in characteristic 0 is
ω-stable.

Exercise 5. Let κ be an infinite cardinal. Show that a theory T is κ-stable if in each
model M of T there are at most κ many 1-types over each set of parameters of size at most κ
from M .

Exercise 6. Let κ be an infinite cardinal. Show that a theory T is κ-stable if in each
model M of T there are at most κ many 1-types realised in M over each set of parameters of
size at most κ from M . (Remember that all theories are assumed to be complete!)

Exercise 7. If T is an L-theory and K is a sublanguage of L, then the reduct T � K is
the set of all K-sentences which follow from T . Show that T is totally transcendental if and
only if T � K is ω-stable for any at most countable K ⊆ L.

Exercise 8. Show that if T is a countable ω-categorical theory, then its unique model of
cardinality ω is ω-saturated.





CHAPTER 4

Totally transcendental theories

In the previous chapter we have established that countable theories which are categorical
in some uncountable cardinal are totally transcendental. For this reason we now embark on a
study of these totally transcendental theories. In fact, for the proof of Morley’s theorem we
need two results about these theories, one on atomic extensions and one on indiscernibles. The
second is the most difficult of the two and requires the notions of Morley rang and degree; we
will introduce these notions and prove the second result in the next chapter. This chapter will
devoted to the proof of the first result:

Theorem 4.1. Assume T is a totally transcendental theory. If M |= T and B ⊆ M , then
there exists A �M such that B ⊆ A and A is atomic over B.

Before we explain the terminology, let us first recall that if p(x) is an isolated type in the
type space of some theory T , there is formula ϕ(x) such that p(x) is the sole element of [ϕ(x)].
This means that ϕ(x) ∈ p(x) and every formula ψ(x) in p(x) is a consequence over T of ϕ(x). In
this case, we will say that ϕ(x) isolates p(x) and that the formula ϕ(x) is isolating (sometimes
also called principal or complete).

Theorem 4.2. If T is a totally transcendental theory, then isolated types are dense in the
type spaces of T . Therefore, if T is countable, T has a prime model.

Proof. If isolated types are not dense, then there is a consistent ϕ(x) which is not a
consequence of an isolating formula. Call such a formula perfect. Since perfect formulas are not
isolating, they can be “decomposed” into two consistent formulas which are jointly inconsistent.
These have to be perfect as well, leading to a binary tree of consistent formulas. �

We can now explain what we mean by atomic extensions:

Definition 4.3. Let A be a model and B ⊆ A. An element a ∈ A is atomic over B if
the type tp(a/B) is isolated. If each element a ∈ A is atomic over B, we say that A is atomic
over B. We will say that A is constructible over B, if there is an ordinal γ and an enumeration
(aα)α<γ of A, such that each aα is atomic over B ∪Aα, where Aα = {aβ : β < α}.

As a first step towards proving Theorem 4.1, we will first establish the corresponding result
for constructible extensions.

Lemma 4.4. Assume T is totally transcendental. If M |= T and B ⊆M , then there exists
A �M such that B ⊆ A and A is constructible over B.

Proof. First note that if T is totally transcendental, and A is any subset of a model M
of T , then TA = {ϕ ∈ LA : M |= ϕ} is totally transcendental as well. Hence isolated types are
dense in the type spaces of TA by Theorem 4.2.

13



14 4. TOTALLY TRANSCENDENTAL THEORIES

Let us call an enumeration (aα)α<γ of some subset of M a construction, if each aα is atomic
over B ∪ Aα. Zorn’s Lemma allows us to find a maximal construction (aα)a<γ which cannot
be prolonged by an element aγ ∈ M . Writing A = Aγ for the set of elements of this maximal
construction, we clearly have that B ⊆ A and that A is closed under all the functions in M .
So it remains to show that A is the universe of an elementary substructure of M . For this we
employ the Tarski-Vaught Test.

So assume ϕ(x) is an LA-formula and M |= ∃xϕ(x). Since isolated types over A are dense,
there is an isolated p(x) ∈ S(TA) with ϕ(x) ∈ p(x). Let a be a realisation of p(x) in M . If
a 6∈ A, then we could prolong our construction by aγ = a; thus a ∈ A and ϕ(x) is realised in
A. �

This means that we would obtain a proof of Theorem 4.1 if we could show that constructible
extensions are atomic. This is true, but to prove that we need another lemma:

Lemma 4.5. Let a and b be two finite tuples of elements of a structure M . Then tp(ab) is
isolated if and only if tp(a/b) and tp(b) are isolated.

Proof. First assume that ϕ(x, y) isolates tp(a, b). Then ϕ(x, b) isolates tp(a/b) and we
claim ∃xϕ(x, y) isolates p(y) = tp(b): we have ∃xϕ(x, y) ∈ p(y) and if σ(y) ∈ p(y), then
M |= ∀x, y (ϕ(x, y)→ σ(y) ) and hence M |= ∀y (∃xϕ(x, y)→ σ(y) ).

Conversely, suppose ρ(x, b) isolates tp(a/b) and σ(y) isolates p(y) = tp(b). Then ρ(x, y) ∧
σ(y) isolates tp(ab). For if ϕ(x, y) ∈ tp(ab), then ϕ(x, b) belongs to tp(a/b) and M |=
∀x ( ρ(x, b) → ϕ(x, b) ). Hence ∀x ( ρ(x, y) → ϕ(x, y)) ∈ p(y) and so it follows that M |=
∀y (σ(y)→ ∀x ( ρ(x, y)→ ϕ(x, y) ). Thus M |= ∀x, y ( ρ(x, y) ∧ σ(y)→ ϕ(x, y) ). �

Lemma 4.6. Let A be an L-structure and B ⊆ A. If A is constructible over B, then it is
also atomic over B.

Proof. Without loss of generality, we may assume that the structure A contains names
for all the elements of B. So let A be a constructible over B and let a be a tuple from A. We
have to show that a is atomic.

We can clearly assume that the elements of a are pairwise distinct and do not belong to B.
In addition, we can permute the elements of a so that

a = aαb

for some tuple b ∈ Aα. By assumption, there is an L-formula ϕ(x, y) and a tuple c from Aα
such that ϕ(x, c) isolates the type of aα over Aα. In particular, aα is atomic over bc. Using
induction, we know that bc is atomic, so the previous lemma gives us that both aαbc and
a = aαb are atomic. �

This completes the proof of Theorem 4.1, and hence of the main result of this chapter.

1. Exercises

Exercise 9. Let A be a model of some theory T and B be a subset of A. We will say
that A is prime over B, if any partial elementary map B →M extends to an elementary map
A→M .

(i) Show that if A is constructible over B, then A is also prime over B.
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(ii) Show that if T is totally transcendental and A is prime over B, then A is also atomic
over B.





CHAPTER 5

Morley rank and degree

The aim of this chapter is to give a proof of:

Theorem 5.1. Assume T is a countable and totally transcendental theory, and suppose
A |= T and C ⊆ A. If A is uncountable and |C| < |A|, then there is a nonconstant sequence
(ak : k ∈ N) of indiscernibles in (A, c)c∈C .

(Here (A, c)c∈C is result of adding constants to the model A for all the elements in C.) To
prove this result, we need to introduce the concepts of Morley rank and degree; these concepts
make sense for any theory T , but they work best in case T is totally transcendental, as we shall
see.

1. Morley rank

Definition 5.2. Suppose A is an ω-saturated model, ϕ(x) is an LA-formula, and α is an
ordinal. We define RMx(A,ϕ(x)) ≥ α by induction on α:

(1) RMx(A,ϕ(x)) ≥ 0 if A |= ∃xϕ(x);
(2) RMx(A,ϕ(x)) ≥ α+ 1 if there is a sequence (ϕk(x) : k ∈ N) of LA-formulas such that

(a) A |= ∀x (ϕk(x)→ ϕ(x) ) for all k ∈ N;
(b) A |= ∀x¬(ϕk(x) ∧ ϕl(x) ) for all distinct k, l ∈ N;
(c) RMx(A,ϕk(x)) ≥ α for all k ∈ N;

(3) for λ a limit ordinal, RMx(A,ϕ(x)) ≥ λ if RMx(A,ϕ(x)) ≥ α for all α < λ.

Remark 5.3. In this definition it has to be understood that x could be a tuple as well.

Lemma 5.4. Suppose A is an ω-saturated model and ϕ(x) is an LA-formula. Let S be
the class of ordinals α such that RMx(A,ϕ(x)) ≥ α holds. Then exactly one of the following
alternatives holds:

(1) S is empty;
(2) S is the class of all ordinals;
(3) S = {α : α ≤ γ} for some ordinal γ.

Proof. This really amounts to showing that RMx(A,ϕ(x)) ≥ α and α > β ≥ 0 imply
RMx(A,ϕ(x)) ≥ β. We prove this by induction on α and β. The cases where α or β is a limit
ordinal are easy, so assume RMx(A,ϕ(x)) ≥ α + 1 and α + 1 > β + 1 (so α > β). The first
assumption implies that there is a sequence (ϕk(x) : k ∈ N) with RMx(A,ϕk(x)) ≥ α. But then
RMx(A,ϕk(x)) ≥ β and hence RMx(A,ϕ(x)) ≥ β + 1, as desired. �

Definition 5.5. Let A be an ω-saturated model and let ϕ(x) be an LA-formula. If the
third alternative from Lemma 5.4 holds, we call ϕ(x) ranked with Morley rank γ and we will
write RMx(A,ϕ(x)) for γ.

17
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Note that in Lemma 5.4 the first alternative holds only when ϕ(x) cannot be realised in
A. So if a formula ϕ(x) is realised in A, but has no Morley rank, then this must mean that
RMx(A,ϕ(x)) ≥ α holds for all ordinals α. (Some authors write RMx(A,ϕ(x)) = ∞ in this
case.)

A natural question is: if ϕ(x) is an LA-formula, but A is not ω-saturated, can we still
define the Morley rank of A? Of course, we could take an elementary extension B of A which is
ω-saturated and compute the Morley rank of ϕ there, but right now it is not clear that this does
not depend on our choice B. As we will see, it does not depend on this choice and therefore we
can safely define the Morley rank of ϕ(x) in this way. In fact, something stronger is true:

Lemma 5.6. Let A be a model and ϕ(x, y) be an L-formula. If a is a finite tuple of elements
of A and B is an ω-saturated elementary extension of A, then the value of RMx(B,ϕ(x, a))
depends only on tpA(a).

Proof. It suffices to prove that the truth value of RMx(B,ϕ(x, a)) ≥ α only depends on
the type of a. We prove this by induction on α; the case that α = 0 or a limit ordinal is trivial.
So assume the statement holds for all α < β + 1.

For j = 1, 2, let Aj be a model of T and aj be finite tuples from Aj with tpA1
(a1) = tpA2

(a2)
and Bj be ω-saturated elementary extensions of Aj . We assume RMx(B1, ϕ(x, a1)) ≥ β + 1
and need to prove RMx(B2, ϕ(x, a2)) ≥ β + 1. This assumption yields a sequence of formulas
(ϕk(x, bk) : k ∈ N) to witness that RMx(B1, ϕ(x, a1)) ≥ β + 1, that is,

(1) B1 |= ∀x (ϕk(x, bk)→ ϕ(x, a1) ) for all k ∈ N;
(2) B1 |= ∀x¬(ϕk(x, bk) ∧ ϕl(x, bl) ) for all distinct k, l ∈ N;
(3) RMx(B1, ϕk(x, bk)) ≥ β for all k ∈ N.

Since B2 is ω-saturated and tpB1
(a1) = tpB2

(a2), we may construct inductively a sequence
(ck : k ∈ N) of finite tuples from B2 such that for all k ∈ N

tpB2
(a2c0 . . . ck) = tpB1

(a1b0 . . . bk).

It follows that

(1) B2 |= ∀x (ϕk(x, ck)→ ϕ(x, a2) ) for all k ∈ N;
(2) B1 |= ∀x¬(ϕk(x, ck) ∧ ϕl(x, cl) ) for all distinct k, l ∈ N;
(3) RMx(B2, ϕk(x, ck)) ≥ β for all k ∈ N.

(Statements (1) and (2) are immediate; for (3) use the induction hypothesis.) We conclude
RMx(B2, ϕk(x, a2)) ≥ β + 1, as desired. �

The following theorem makes clear why the concept of Morley rank is a tool which is
especially suited for analysing totally transcendental theories.

Theorem 5.7. The following are equivalent for a theory T :

(1) T is totally transcendental.
(2) if A |= T and ϕ(x) is an LA-formula which is realised in A, then ϕ(x) is ranked.

Proof. (1)⇒ (2): Let A be a model of T and let ϕ(x) be an LA-formula which is realised,
but not ranked (that is, RM(ϕ(x)) ≥ α holds for all α). We may assume that A is ω-saturated.
Since the formulas from LA form a set, there is an ordinal α such that there are no ranked
formulas whose Morley rank is ≥ α. So because RM(ϕ(x)) ≥ α+1, there must be contradictory
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formulas ψ1(x) and ψ2(x) with RM(ψi(x)) ≥ α and A |= ψi(x) → ϕ(x). So ϕ(x) ∧ ψ1(x) and
ϕ(x) ∧ ψ2(x) are both realised in A and unranked. Continuing in this way we create a binary
tree of consistent formulas in A, so T is not totally transcendental.

(2) ⇒ (1): Conversely, if T is not totally transcendental, then there is a model A together
with a binary tree (ϕs : s ∈ {0, 1}∗) of LA-formulas satisfying conditions (1)-(3) from Definition
3.1. We claim that none of the formulas ϕs can be ranked. For if there would a formula ϕs
with a rank, there would have to be a ϕs which has minimal rank α. But then consider
ϕs0, ϕs10, ϕs110, . . .: these formulas are realised and mutually contradictory, and imply ϕs in A.
But then at least one of these formulas must have a Morley rank which is strictly smaller than
α, contradicting the minimality of α. �

In the sequel we will need the following computation rules for the Morley rank:

Lemma 5.8. Let A be an ω-saturated model and let ϕ(x), ψ(x) be LA-formulas.

(1) RMx(A,ϕ(x)) = 0 iff the number of tuples u ∈ A for which A |= ϕ(u) is finite and
> 0.

(2) if A |= ϕ(x)→ ψ(x), then RMx(A,ϕ(x)) ≤ RMx(A,ψ(x)).
(3) RMx(A,ϕ(x) ∨ ψ(x)) = max(RMx(A,ϕ(x)),RMx(A,ψ(x))).

We will not prove this lemma; in fact, it will be exercise 10.

The notion of Morley rank can be extended to types, as follows:

Definition 5.9. Let M be a model and A be a subset of M . We will call a type p(x) over
A ranked, if it contains at least one ranked formula. In that case, the Morley rank of p is the
least Morley rank of a formula in p(x).

A key property of ranked types is that are completely determined by a single element: they
are like isolated types in that respect. To show this, we need the notion of Morley degree.

2. Morley degree

The definition of Morley degree relies on the following lemma:

Lemma 5.10. Let A be an ω-saturated model and ϕ(x) be a ranked LA-formula with Morley
rank α. There exists a finite bound on the integers k such that there is a sequence of LA-formulas
(ϕj(x) : 0 ≤ j < k) such that

(1) RMx(A,ϕj(x)) = RMx(A,ϕ(x)) for all j < k;
(2) A |= (ϕj(x)→ ϕ(x) ) for all j < k;
(3) A |= ¬(ϕi(x) ∧ ϕj(x)) for distinct i, j < k.

Moreover, there is a sequence (ϕj(x) : 0 ≤ j < k) realising the maximal such k for which
A |= ϕ(x)↔

∨
j ϕj(x).

Proof. We will construct a sequence of LA-formulas (ϕj(x) : 0 ≤ j < k) satisfying (1)-
(3) which realises the maximal possible k; to this purpose, we will create a binary tree of
LA-formulas, each having Morley rank α. We start by putting ϕ<> = ϕ(x). If ϕs has been
constructed, we check whether there is a formula ψ such that both ϕ ∧ ψ and ϕ ∧ ¬ψ have
Morley rank α. If so, we put ϕs0 = ϕ ∧ ψ and ϕs1 = ϕ ∧ ¬ψ for some such ψ. Otherwise we
stop.
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The resulting tree has to be finite: for otherwise it would have (by König’s Lemma, see
the Appendix) an infinite branch B. But then ϕs ∧ ¬ϕt for any two s, t ∈ B such that t is an
immediate successor of s would be an infinite sequence witnessing that the Morley rank of ϕ is
≥ α+ 1.

So let L be the collection of leaves of the tree. Then (ϕs : s ∈ L) is a sequence satisfying
(1)-(3): in fact, ϕ↔

∨
s∈L ϕs. We claim it realises the maximal possible k.

For suppose (ψj(x) : 0 ≤ j < k) is another such sequence satisfying (1)-(3) and k > |L|.
Then, for a fixed s ∈ L, there can be at most one i < k such that ϕs ∧ ψi has Morley rank α:
for the formulas ψi(x) and ψj(x) are contradictory whenever i and j are distinct, and s ∈ L is
a leaf, so cannot be split into two contradictory formulas of rank α. But then it follows from
the Pigeonhole Principle and the fact that k > |L|, that there is a j < k such that ψj ∧ ϕs has
rank < α for all s ∈ L. But as ψj is equivalent to the disjunction of all formulas ψj ∧ ϕs, it
follows that ψj must itself have Morley rank < α. Contradiction! �

Definition 5.11. If A is ω-saturated and ϕ(x) is a ranked LA-formula, the greatest in-
teger whose existence we just proved is called the Morley degree of ϕ(x) and it is denoted by
dM(ϕ(x)).

If ϕ(x) is a ranked LA-formula, but A is not ω-saturated, we can still define the Morley
degree of ϕ(x) by embedding A into an ω-saturated elementary extension B of A and computing
the Morley degree in B. Similarly as in Lemma 5.6, one can show that this does not depend on
the choice of B; in fact, that the Morley degree of ϕ(x, a), where ϕ(x, y) is an L-formula and a
is a tuple from A, depends only on tpA(a).

The notion of Morley degree has the following properties:

Lemma 5.12. Let A be an ω-saturated model and let ϕ(x) and ψ(x) be ranked LA-formulas.

(1) If dM(ϕ(x)) = d and this is witnessed by the sequence (ϕj(x) : 0 ≤ j < d), then each
ϕj(x) has Morley degree 1.

(2) If RMx(A,ϕ(x)) = RMx(A,ψ(x)) and A |= ϕ(x)→ ψ(x), then dM(ϕ(x)) ≤ dM(ψ(x)).
(3) If RMx(A,ϕ(x)) = RMx(A,ψ(x)), then dM(ϕ(x) ∨ ψ(x)) ≤ dM(ϕ(x)) + dM(ψ(x)),

with equality if A |= ¬(ϕ(x) ∧ ψ(x) ).
(4) If RMx(A,ϕ(x)) < RMx(A,ψ(x)), then dM(ϕ(x) ∨ ψ(x)) = dM(ψ(x)).

Again, we leave the proof of this lemma as an exercise.

The notion of Morley degree can be extended to types, as follows:

Definition 5.13. Let M be a model and A be a subset of M , and assume p(x) is a ranked
type over A with Morley rank α. The Morley degree of p is the least Morley degree of a formula
with Morley rank α in p(x).

We now have the following result, as promised:

Theorem 5.14. Let M be a model and A be a subset of M , and let p(x) be a ranked type
over A with Morley rank α and Morley degree d. Then p(x) contains a formula ϕ(x) with Morley
rank α and Morley degree d, by definition, and any such formula ϕ(x) determines the type p(x)
in that p(x) consists exactly of the LA-formulas ψ(x) such that RM(ψ(x)∧ϕ(x)) = RM(ϕ(x)).

Proof. We may assume that M is ω-saturated. Now, if ψ(x) is any formula in p(x),
also ψ(x) ∧ ϕ(x) ∈ p(x) and hence RM(ψ(x) ∧ ϕ(x)) ≥ RM(ϕ(x)) by choice of ϕ(x). Hence
RM(ψ(x) ∧ ϕ(x)) = RM(ϕ(x)).
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Conversely, suppose ψ(x) is any LA-formula with RM(ψ(x) ∧ ϕ(x)) = RM(ϕ(x)) and
dM(ψ(x) ∧ ϕ(x)) = dM(ϕ(x)). By way of contradiction, if ψ(x) 6∈ p(x), then ¬ψ(x) ∈ p(x)
and ¬ψ(x) ∧ ϕ(x) ∈ p(x). But then RM(ϕ(x)) = RM(¬ψ(x) ∧ ϕ(x)) and dM(ϕ(x)) ≥
dM(ψ(x) ∧ ϕ(x)) + dM(¬ψ(x) ∧ ϕ(x)) > dM(¬ψ(x) ∧ ϕ(x)), which contradicts the choice
of ϕ(x). �

3. Morley sequence

In this section, we will prove the main result of this chapter. But before we can do this,
we need one more definition and one more technical lemma.

Definition 5.15. Let A be a model and C ⊆ A, and let ϕ(x) be a ranked LC-formula with
Morley rank α and Morley degree d. A sequence (aγ : γ < δ) of elements from A indexed by an
infinite ordinal δ is a Morley sequence over ϕ(x), if for every γ < δ we have that A |= ϕ(aγ)
and that tp(aγ/C ∪Aγ) has Morley rank α and Morley degree d.

Lemma 5.16. Let A be a model and C ⊆ A, and let ϕ(x) be a ranked LC-formula with
Morley rank α and Morley degree d. If (aγ : γ < δ) is a Morley sequence over ϕ(x), then it is a
sequence of indiscernibles over C.

Proof. We prove by induction on n that whenever γ0 < . . . < γn, then tp(aγ0 , . . . , aγn/C) =
tp(a0, . . . , an/C).

First consider n = 0. We have A |= ϕ(aγ), so the type tp(aγ/C) contains ϕ(x); also, its
rank is α and degree is d, hence tp(aγ/C) is completely determined by ϕ(x), as in Theorem
5.14. But as the way in which it is determined by this formula does not depend on γ, all
tp(aγ/C) have to be identical.

So suppose the statement is true for n. Both tp(aγn+1
/C∪{aγ0 , . . . , aγn}) and tp(an+1/C∪

{a0, . . . , an}) have rank α and degree d and contain ϕ(x), so we have:

(i) A |= ψ(aγ0 , . . . , aγn , aγn+1) iff ψ(aγ0 , . . . , aγn , x) ∧ ϕ(x) has Morley rank α.
(ii) A |= ψ(a0, . . . , an, an+1) iff ψ(a0, . . . , an, x) ∧ ϕ(x) has Morley rank α.

The induction hypothesis gives us tp(aγ0 , . . . , aγn/C) = tp(a0, . . . , an/C), so the right hand
sides in (i) and (ii) are equivalent by Lemma 5.6. Hence

tp(aγ0 , . . . , aγn , aγn+1
/C) = tp(a0, . . . , an, an+1/C),

as desired. �

Theorem 5.17. Assume T is a countable and totally transcendental theory, and suppose
A |= T and C ⊆ A. If A is uncountable and |C| < |A|, then there is a nonconstant sequence
(ak : k ∈ N) of indiscernibles in (A, c)c∈C .

Proof. We may assume C is infinite. Write λ = |C|. The formula x = x is satisfied by
> λ many elements, so choose an LA-formula ϕ(x) that is satisfied by > λ many elements and
has minimum possible Morley rank α and Morley degree d (in lexicographic order). Note that
α > 0 since ϕ(x) is satisfied by infinitely many elements. By adding finitely many elements to
C we may assume that ϕ(x) is an LC-formula.

We will construct by induction on k a sequence (ak : k ∈ N) of elements of A that satisfy
ϕ(x) and such that tpA(ak/C ∪{a0, . . . , ak−1}) has Morley rank α and Morley degree d. Hence
it will be an indiscernible sequence by the previous lemma.
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First we claim that there is an a0 with this property. For if no such element would exist,
we would have that Morley rank and degree of tpA(a/C) is < (α, d) for all a ∈ A satisfying
ϕ(x). So each a ∈ A which satisfies ϕ(x) also satisfies an LC-formula ψa(x) with Morley rank
and degree < (α, d). But since there are at most λ many LC-formulas and more than λ many
a satisfying ϕ(x), there must be a formula with Morley rank and degree < (α, d) satisfied by
more than λ many a. Contradiction!

The construction of ak given a0, . . . , ak−1 is similar. In fact, we can give the same argument
as in the previous paragraph, replacing C by C ∪ {a0, . . . , ak−1}. �

4. Exercises

By RM(T ) and dM(T ), the Morley rank and Morley degree of a theory T , we will mean
the Morley rank and Morley degree of the formula x = x over any (ω-saturated) model of T .

Exercise 10. Prove Lemma 5.8.

Exercise 11. Prove Lemma 5.12.

Exercise 12. Let A be an ω-saturated model and ϕ(x) be a ranked LA-formula. If
RMx(A,ϕ(x)) ≥ α, then there exists an LA-formula ψ(x) such that A |= ψ(x) → ϕ(x) and
RMx(A,ψ(x)) = α.

Exercise 13. Let A be an L-structure, let ϕ(x) be an LA-formula and let t(x) be an
L-term. Show that the formulas (ϕ(x)∧ y = t(x)) and ϕ(x) have the same Morley rank. (Here
y is a single, new variable. The Morley rank of ϕ(x) is taken with respect to the variables x
and the Morley rank of (ϕ(x) ∧ y = t(x)) is taken with respect to the variables x, y.)

Exercise 14. Let L be the language consisting of unary predicate symbols P1, ..., Pn. Let
T be the L-theory whose axioms express that the sets P1, ..., Pn are infinite and that they form
a partition of the underlying set of the L-structure being considered. Show that T admits
quantifier elimination and is complete. Show that T has Morley rank 1 and Morley degree n.

Exercise 15. Let A be an ω-saturated model and p(x) be a ranked type over A. Show
that p(x) has Morley degree 1.

Exercise 16. (This is Marker 6.6.17.)

(i) Let L = {E}, where E is a binary relation symbol. Let T be the theory of an
equivalence relaton with infinitely many classes, each of which is infinite. Show that
RM(T ) = 2.

(ii) Let L = {P0, P1, . . .}, where each Pi is a unary predicate. Let T be the theory that
asserts P0 ⊇ P1 ⊇ . . ., with the complement of P0 infinite and Pn \ Pn+1 infinite for
each n. Show that RM(T ) = 2.

(iii) For each n < ω, give an example of a theory with RM(T ) = n.

Exercise 17. Let T be a theory in a language L. If a type p over T has a Morley rank,
then RM(p) < |L|+. Hence, if T is totally transcendental, we have RM(T ) < |T |+.

Exercise 18. Let A be (Z, S,<), the integers together with the successor function and the
usual order, and put T = Th(A).

(i) Show that T has quantifier elimination.
(ii) Show that T has a countable ω-saturated model B. Describe B concretely.
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(iii) What is the Morley rank of T? And what would happen if we would compute the
Morley rank of x = x in A, as in Definition 5.2, ignoring the fact that A is not
ω-saturated?

Exercise 19. (This is Marker 6.6.19.) Let X be a compact Hausdorff space. For every
subset A of X we define

Γ(A) = {x ∈ A : x is not isolated A}.
For α an ordinal, we inductively define Γα(X) as follows:

Γ0(X) = X,

Γα+1(X) = Γ(Γα(X)),

Γλ(X) =
⋂
α<λ

Γα(X), if λ is a limit ordinal

The chain Γα(X) is monotonically decreasing and hence there must an ordinal δ such that
Γα(X) = Γδ(X) for all α > δ. We will write Γ∞(X) for Γδ(X).

(i) Prove that Γ∞(X) is a closed subset of X without isolated points.
(ii) Suppose X has a countable basis. Prove that there is a countable α such that Γα(X) =

Γ∞(X).
(c) Prove that if X has a countable basis, then Γ∞(X) = ∅ of |Γ∞(X)| = 2ω.
(d) Suppose T is totally transcendental and M is a model of T . We will say that p ∈

Sn(TM ) has Cantor-Bendixson rank α, whenever p ∈ Γα(Sn(TM )) \ Γα+1(Sn(TM )).
Show that every type has a Cantor-Bendixson rank and that the Cantor-Bendixson
rank is exactly the Morley rank.





CHAPTER 6

Proof of Morley’s Theorem

By now we have assembled all the ingredients we need for proving Morley’s Theorem.

Theorem 6.1. If T is a countable theory which is κ-categorical for some uncountable
cardinal κ, then T is λ-categorical for all uncountable cardinals λ.

Proof. In view of Theorem 3.4 and Theorem 3.6, it is sufficient to prove the following
statement:

Let T be a countable and totally transcendental theory, and assume κ is an
uncountable cardinal. If every model of T of cardinality κ is κ-saturated,
then every uncountable model of T is saturated.

We prove the contraposition. So suppose T is a totally transcendental theory in a countable
language L and assume T has a model A of cardinality λ that is not λ-saturated. Our goal will
be to construct a model of cardinality κ that is not κ-saturated.

Our assumption means that there is a subset C of A of cardinality < λ and a type p(x)
over C which is not realized in (A, c)c∈C . Theorem 5.17 tells us that there is a nonconstant
sequence (ak : k ∈ N) of indiscernibles in (A, c)c∈C . Write I = {ak : k ∈ N} and note that:

(†) For each LC∪I -formula ϕ(x) that is satisfiable in (A, a)a∈C∪I there exists
ψ(x) ∈ p(x) such that ϕ(x) ∧ ¬ψ(x) is satisfiable in (A, a)a∈C∪I .

(For otherwise p(x) would be realised in (A, a)a∈C .) We claim that (†) holds also for some type
over a countable set C. Indeed, let C0 be any countable subset of C. For each LC0∪I -formula
ϕ(x) that is satisfiable in (A, a)a∈C0∪I let ψϕ be one of the formulas satisfying (†) for ϕ. Since
C0 ∪ I is countable, there is a countable set C1 such that C0 ⊆ C1 ⊆ C and such that the
parameters of ψϕ are in C1. Continuing in this way to create sets Ck, let D =

⋃
{Ck : k ∈ N},

and let q(x) be restriction of p(x) to D. As a result, we have:

(‡) For each LD∪I -formula ϕ(x) that is satisfiable in (A, a)a∈D∪I there exists
ψ(x) ∈ q(x) such that ϕ(x) ∧ ¬ψ(x) is satisfiable in (A, a)a∈D∪I .

Note that (ak : k ∈ N) is also a sequence of indiscernibles in (A, d)d∈D, so by the Standard
Lemma (Lemma 2.5) there is a model B of TD that contains a family (bα : α < κ) realising the
Ehrenfeucht-Mostowski type of (ak : k ∈ N) in (A, d)d∈D.

Using Theorem 4.1 we know that there is an LD-elementary substructure B1 of B which
is atomic over {bα : α < κ}. We claim that the type q(x) is omitted in B1. For suppose q(x)
is realised in B1 by some tuple b. We have that tpB1

(b/{bα :α < κ}) is isolated so it contains
a complete formula ϕ(x, bα0

, . . . , bαn
), where ϕ(x, y) is an LD-formula and α0 < . . . < αn < κ.

So we have that ϕ(x, bα0
, . . . , bαn

) → ψ(x) holds in B1 for every ψ(x) ∈ q(x). But since
bα0 , . . . , bαn and a0, . . . , an realize the same Ehrenfeucht-Mostowski type over D, we have that

25
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ϕ(x, a0, . . . , an) → ψ(x) is valid in B and in A for each formula ψ(x) ∈ q(x). But that
contradicts (‡).

So q(x) is not realised inB1. Since |B1| ≥ κ and LD is countable, the downward Löwenheim-
Skolem Theorem implies that B1 has an LD-elementary substructure B2 of cardinality κ. The
type q(x) is also not realised in B2, so B2 is a model of cardinality κ which is not κ-saturated
(in fact, not even ω1-saturated). This completes the proof. �



APPENDIX A

Combinatorial principles

A basic combinatorial fact is the Pigeonhole Principle:

Proposition A.1. (Pigeonhole Principle) If an infinite set A is partitioned into finitely
many sets C1, . . . , Ck, then at least one Ci has to be infinite.

This is quite clear: if each of the Ci would be finite, then A, as the finite union of finite
sets, would have to be finite as well. But by repeatedly applying this principle, one can prove
statements which are less obvious.

Definition A.2. A partially ordered set (P,≤) is called a tree if P has a least element
and for each p ∈ P the set p< = {q ∈ P : q < p} is a finite linear order. The size of the set
p< = {q ∈ P : q < p} is the height of the element p. The immediate successors of p are the
elements r > p such that the height(r) = height(p) + 1. A tree in which elements p ∈ P have
only finitely many immediate successors is called finitely branching. A branch of a tree is a
maximal linearly ordered subset.

Theorem A.3. (König’s Lemma) A finitely branching infinite tree has an infinite branch.

Proof. If the tree (P,≤) is infinite, then its least element p0 = ⊥ has infinitely many
successors. Since the tree is finitely branching, at least one of its immediate successors also has
infinitely many successors, by the Pigeonhole Principle. Call this element p1. By repeating this,
we create an infinite sequence of elements p0 < p1 < p2 < . . . such that pi+1 is an immediate
successor of pi and each pi has infinitely many successors. Then {p0, p1, p2, . . .} is an infinite
branch. �

Theorem A.4. (Ramsey’s Theorem) Let A be infinite and n ∈ N. Suppose we are given
a partition of [A]n, the set of n-element subsets of A, into finitely many subsets C1, . . . , Ck.
Then there is an infinite subset of A all whose n-element subsets belong to the same subset Ci.

Proof. We think of the numbers {1, . . . , k} as colours and when an n-element subset α
of A belongs to Ci, we will say that α has the colour i. And a subset X of A such that all its
n-element subsets belong to some fixed Ci will be called monochromatic.

We prove Ramsey’s Theorem by induction on n. n = 1 is just the Pigeonhole Principle. So
we assume the statement is true for n and prove it for n+ 1. Let a0 ∈ A: then any colouring of
[A]n+1 induces a colouring of [A \ {a0}]n: just colour α ∈ [A \ {a0}]n by the colour of {a0}∪α.
We obtain a infinite monochromatic subset B1 ⊆ A \ {a0}. Picking an element a1 ∈ B1 and
continuing in this fashion we obtain an infinitely descending sequence A = B0 ⊇ B1 ⊇ . . . and
elements ai ∈ Bi − Bi+1 such that the colour of any (n + 1)-element subset {ai(0), . . . , ai(n)}
(i(0) < . . . < i(n)) depends only on the value of i(0). Applying the Pigeonhole Principle again
there are infinitely many i(0) for which this colour will be the same. These ai(0) then yield the
desired monochromatic set. �
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